FLUORESCENCE MONITORING OF THE **CONFORMATIONAL CHANGE IN** α₂-MACROGLOBULIN INDUCED BY TRYPSIN **UNDER SECOND-ORDER CONDITIONS:** THE MACROGLOBULIN ACTS BOTH AS A SUBSTRATE AND A COMPETITIVE INHIBITOR OF THE PROTEASE

INCI ÖZER* and HILAL ŞIMŞEK

Department of Biochemistry, School of Pharmacy, Hacettepe University, 06100 Ankara, Turkey

(Received 25 April 1999)

The reaction of bovine pancreatic trypsin with human plasma α_2 -macroglobulin (α_2 M) was studied at 25°C, using equimolar mixtures of E and I in 50 mM potassium phosphate buffer, pH 7. The conformational change in α_2 M was monitored through the increase in protein fluorescence at 320 nm (exc λ , 280 nm). At $[\alpha_2 M]_0 = [E]_0 = 11.5 - 200$ nM, the fluorescence change data fit the integrated second-order rate equation, $(F_{\infty} - F_0)/(F_{\infty} - F_t) = 1 + k_{1,\text{obsd}} [\alpha_2 M]_0 t$, indicating that cleavage of the bait region in $\alpha_2 M$ was the rate-determining step.

The apparent rate constant $(k_{i,obsd})$ was found to be inversely related to reactant concentration. The kinetic behavior of the system was compatible with a model involving reversible, nonbait region binding of E to α_2 M, competitively limiting the concentration of E available for bait region cleavage. The intrinsic value of k_i was $(1.7 \pm 0.24) \times 10^7 \,\mathrm{M}^{-1} \,\mathrm{s}^{-1}$. K_p , the inhibitory constant associated with peripheral binding, was estimated to be in the submicromolar range.

The results of the present study point to a potential problem in interpreting kinetic data relating to protease-induced structural changes in macromolecular substrates. If there is nonproductive binding, as in the case of trypsin and $\alpha_2 M$, and the reactions are monitored under pseudo first-order conditions ($[S]_0 \gg [E]_0$), an intrinsically second-order process (such as the rate-limiting bait region cleavage in $\alpha_2 M$) may become kinetically indistinguishable from an intrinsically first-order process (e.g. rate-limiting conformational change). Hence an excess of one component over the other should be avoided in kinetic studies addressing such systems.

Keywords: α₂-Macroglobulin; Protease-induced conformational change; Protein fluorescence

Abbreviations: $\alpha_2 M$, α_2 -macroglobulin; BAEE, N_{α} -benzoyl-L-arginine ethyl ester

^{*} Corresponding author. Fax: (90)3123114777.

INTRODUCTION

 α_2 -Macroglobulin (α_2 M) is a 725 kDa homotetrameric plasma glycoprotein, long established as a general protease inhibitor, with recent findings pointing to an additional role in the modulation of growth factor action. 1-5 Protease inhibition by $\alpha_2 M$ is a multi-step process, sequentially involving: (a) proteolytic cleavage of a peptide bond in the "bait region" of the inhibitor which spans residues 666-706 in each subunit, (b) nucleophilic cleavage of the thiol ester bond between the side chains of cys-949 and glu-952 and (c) a gross, conformational change which culminates in the physical entrapment of up to two protease molecules within the central cavity of tetrameric $\alpha_2 M$. Proteases so entrapped retain their enzymatic activity. Synthetic substrates which can diffuse into the trap freely are readily hydrolyzed;9 inhibition applies to macromolecular substrates which are sterically excluded from the vicinity of the enzyme.

The kinetics of the reaction of $\alpha_2 M$ with target proteases and the target specificity of the inhibitor have been studied by a variety of methods, indexed to the rate of appearance of titratable sulfhydryl groups, 6,7,10 changes in intrinsic or ligand-associated fluorescence^{6,7,11,12} or changes in X-ray solution scattering behavior. 13 Additional information relating to target specificity derives from experiments on the partitioning of proteases between $\alpha_2 M$ and α_1 -proteinase inhibitor. ^{14,15} Second-order rate constants (k_i) reported for the chemical phase of the inhibitory process (bait region/ thiol ester cleavage) range from $6 \times 10^3 \,\mathrm{M}^{-1} \,\mathrm{s}^{-1}$ (for thrombin⁷) to $4 \times$ 10⁷ M⁻¹ s⁻¹ (for neutrophil elastase¹⁴). The rate constant^{11,13} for the conformational rearrangement step is of the order of $1 \, \text{s}^{-1}$.

This report concerns the estimation of k_i in the reaction of bovine pancreatic trypsin with $\alpha_2 M$, as monitored under second-order conditions, through changes in intrinsic protein fluorescence. The reaction has previously been studied in several laboratories, under pseudo first-order conditions. At $[\alpha_2 M]_T = 2.5 \,\mu M$ and excess benzamidine to buffer $[E]_{free}$ at 0.54-1.8 nM, kinetic analysis⁶ of the appearance of titratable SH groups yielded $k_i = 2 \times 10^7 \,\mathrm{M}^{-1} \,\mathrm{s}^{-1}$. Stopped-flow fluorimetric analysis of TNSprobed conformational changes¹¹ at $[\alpha_2 M]_T = 10[E]_T = 2-11 \,\mu\text{M}$ yielded a similar value, $1 \times 10^7 \,\mathrm{M}^{-1} \,\mathrm{s}^{-1}$. Upon monitoring the $\alpha_2 \mathrm{M}$ -trypsin system in the absence of modulatory or reporter ligands and under second-order conditions ($[I]_T = [E]_T$), we have found that the observed k_i is not a constant, as expected, but an inverse function of protein concentration. The results suggest that bait region cleavage by trypsin is subject to competitive inhibition by peripheral E-binding sites on α_2 M and further point to a possible source

of error in the mechanistic interpretation of kinetic data when protease action on $\alpha_2 M$ is studied under the pseudo first-order conditions, [I] \gg [E].

MATERIALS AND METHODS

Biochemicals and chromatographic matrices were purchased from Sigma Chemical Co. (USA). Stocks of N-tosyl-L-phenylalanine chloromethylketone-treated bovine pancreatic trypsin were prepared in 2 mM HCl and active site-titrated with p-nitrophenyl-p'-guanidinobenzoate. $^{16}\alpha_2$ M was purified from human plasma obtained from the Blood Bank of Hacettepe University Hospitals, essentially as described previously. 17

Assay of α_2 -Macroglobulin Activity

A constant aliquot of the $\alpha_2 M$ stock solution was preincubated for 3 min at 25°C with increasing amounts of active site-titrated E in 50 mM potassium phosphate buffer, pH 7. Enzyme not entrapped in α_2 M was inactivated by the addition of excess human α_1 -proteinase inhibitor (prepared in this laboratory). Following further preincubation for 3 min, α_2 M-associated enzymatic activity was assayed in 50 mM tris-HCl (pH 8) containing 0.5 mM BAEE as substrate. The esterase reaction was monitored spectrophotometrically at 253 nm. (One $\mu M \alpha_2 M$ -associated trypsin was found to cause an increase in absorbance of 0.66 ± 0.076 units per min.) Observed activity increased linearly with added E and reached a plateau at the point where $[E]_T = [\alpha_2 M]_T$. The trypsin entrapment capacity of the $\alpha_2 M$ stock (1.5 nmol E/nmol tetrameric I) was calculated from the equivalence point observed in the titration experiment.

Kinetic Measurements

The kinetics of the reaction between trypsin and $\alpha_2 M$ were studied fluorimetrically at 25°C in 50 mM potassium phosphate buffer, pH 7, using equimolar mixtures of active enzyme and inhibitor in the 11.5-200 nM range. (The concentration of $\alpha_2 M$ was defined in units of trypsin entrapment capacity.) Total reaction volume was 2 ml; the reactions were initiated by the addition of 3-35 µl enzyme by means of a lambda pipette. The change in intrinsic protein fluorescence intensity was monitored using a Shimadzu RF-5301 PC spectrofluorimeter equipped with a magnetically stirred, thermostatted cuvette compartment. The instrument was operated in the "quantitative"

mode to avoid continuous irradiation of the samples. Readings were taken every 6-15s. Wavelengths and slit widths were: excitation, 280 and 1.5 nm; emission, 320 and 10 mm. The emission λ corresponded to the peak of the fluorescence difference spectrum of trypsin-treated vs native $\alpha_2 M$.

At $[\alpha_2 M]_0 = [E]_0 = 57$ nM, the reaction was also studied in the presence of 0.13-1.5 mM BAEE as competitive inhibitor. Flourescence intensities were recorded in the initial time interval where < 10% of BAEE was hydrolyzed (and at $t = \infty$, to allow for the slight fluorescence quenching caused by the BAEE/benzoyl arginine couple).

Data Analysis

Depending on whether or not BAEE was present, the data were analyzed basically according to either Equation (1) or (2) applicable to second-order reactions when reactant concentrations are equal. Modifications were introduced, as called for by the system under study (see below).

$$\frac{F_{\infty} - F_0}{F_{\infty} - F_t} = 1 + [\alpha_2 \mathbf{M}]_0 k_i t \tag{1}$$

$$\frac{F_{\infty} - F_0}{F_{\infty} - F_t} = 1 + [\alpha_2 M]_0 \{ K_{BAEE} / (K_{BAEE} + [BAEE]) \} k_i t$$
 (2a)

$$\frac{1}{k_{i,\text{obsd}}} = \frac{1}{k_i} + \frac{[\text{BAEE}]}{k_i K_{\text{BAEE}}}$$
 (2b)

RESULTS

The time course for the fractional change in fluorescence intensity in the reaction of equimolar mixtures of $\alpha_2 M$ and trypsin (11.5 and 115 nM active protein) is shown in Figure 1. Lacking rapid mixing equipment, the reactions could only be monitored beyond the first half-life ($t_{experimental}$ = $t_{\rm real}$ – (4 ± 1) s), so that F_0 refers to the sum of the fluorescence signals of $\alpha_2 M$ and E in isolation rather than an experimentally observed parameter. Nevertheless, within the period of observation, the progress curves were found to be much less sensitive to initial reactant concentrations than expected from a simple second-order reaction mechanism. Accordingly, while secondary plots of the data according to Equation (1) were linear (Figure 2),

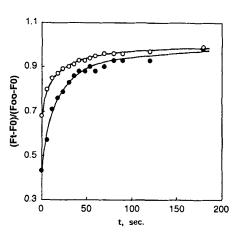


FIGURE 1 Time course for the change in protein fluorescence in the reaction of trypsin with $\alpha_2 M$. $[\alpha_2 M]_0 = [E]_0 = 11.5$ (\bullet) and 115 (\bigcirc) nM. (Concentrations refer to the active dimeric unit of α_2 M and to catalytically active trypsin.)

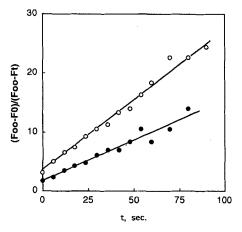


FIGURE 2 Second-order plots of the fluorescence change in the reaction of E with $\alpha_2 M$. Data and symbols as in Figure 1.

 k_i as estimated from the slopes of such plots was found to be an "apparent" constant $(k_{i,obsd})$ and to vary inversely with protein concentration (Figure 3). Values ranged from $(1.2 \pm 0.2) \times 10^7 \,\mathrm{M}^{-1} \,\mathrm{s}^{-1}$ at $[\alpha_2 \mathrm{M}]_0 = [\mathrm{E}]_0 = 11.5 \,\mathrm{nM}$ to $(1.5 \pm 0.13) \times 10^6 \,\mathrm{M}^{-1} \,\mathrm{s}^{-1}$ at $[\alpha_2 \mathrm{M}]_0 = [\mathrm{E}]_0 = 200 \,\mathrm{nM}$. Upon extrapolation of the data to infinite dilution, k_i was found to be $(1.7 \pm 0.24) \times 10^7 \,\mathrm{M}^{-1} \,\mathrm{s}^{-1}$.

To eliminate the possibility that the observed dependence of $k_{i,obsd}$ on protein concentration was an experimental artifact arising from the technical difficulties of monitoring a fast reaction with conventional equipment,

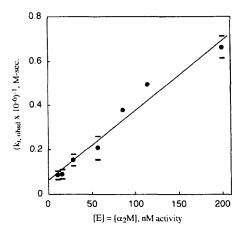


FIGURE 3 Dependence of the apparent second-order rate constant for the reaction between E and $\alpha_2 M$ on protein concentration. Each point is the average of at least two determinations; error bars have been included where SD $\geq \pm 10\%$.

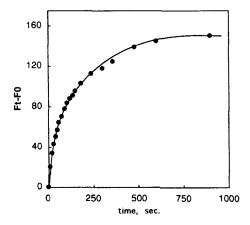


FIGURE 4 Time course for the change in protein fluorescence in the BAEE-inhibited reaction of trypsin with $\alpha_2 M$. $[\alpha_2 M]_0 = [E]_0 = 57 \text{ nM}$; $[BAEE]_0 = 0.5 \text{ mM}$.

the system was also studied in the presence of varying concentrations of BAEE (and $[\alpha_2 M]_0 = [E]_0 = 57 \text{ nM}$). A typical course for the BAEE-inhibited reaction is shown in Figure 4. As required by Equation (2b), $1/k_{i,obsd}$ was linearly related to [BAEE] (Figure 5). The ordinate intercept yielded a limiting value, $k_{i,obsd} = (4.6 \pm 0.55) \times 10^6 \,\mathrm{M}^{-1}\,\mathrm{s}^{-1}$, in close agreement with the experimental value obtained in the absence of BAEE ((4.8 \pm 0.48) \times $10^6 \,\mathrm{M}^{-1} \,\mathrm{s}^{-1}$) and validating the data in Figures 1–3.

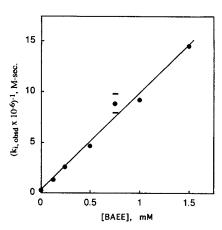


FIGURE 5 Dependence of the apparent second-order rate constant for the reaction between E and $\alpha_2 M$ on $[BAEE]_0$. $[\alpha_2 M]_0 = [E]_0 = 57 \text{ nM}$. Each point is the average of at least two determinations; error bars have been included where SD $\geq \pm 10\%$.

DISCUSSION

The inverse relationship between $k_{i,obsd}$ and protein concentration in the reaction of trypsin with α_2M could arise from: (a) reversible self-associations of E and/or α_2 M to yield species with inferior activity, (b) inhibition due to binding of inactive trypsin to native $\alpha_2 M$, thereby rendering it resistant to bait region cleavage, (c) competitive inhibition of E by $\alpha_2 M$. The first possibility was dismissed, because the second-order plots for the reactions (Figure 2) were linear, with no evidence for the time-dependent acceleration that should be observed as the presumptive association-dissociation equilibrium is shifted towards the right. Self-association of E was also ruled out by the constancy of specific esteratic activity in the range, $[E] = 0-700 \,\text{nM}$. Alternative (b) was deemed unlikely, since the level of inactive protein in the trypsin preparation (ca. 30%) could not account for the 10-fold decrease in $k_{i,obsd}$, even if quantitative binding were invoked. Hence further deliberations were focused on alternative (c), i.e. competitive inhibition of trypsincatalyzed bait region cleavage in $\alpha_2 M$ by $\alpha_2 M$ itself.

A working model, which takes the $\alpha_2 M$ half-molecule (M_r 360 000) as the functional unit in protease entrapment, is outlined in Scheme 1. Further assumptions, inspired by the simplicity of the observed kinetics, were: (a) the half-molecules are noncooperative, (b) each half-molecule has $n \gg 1$ peripheral (nonbait region) trypsin-binding sites which are independent and have similar affinities $(1/K_p)$ for E. Hence, at any time t,

 $\alpha_2 M$ (native dimeric unit)

SCHEME 1 α_2M-E^* , conformationally altered α_2M with entrapped enzyme; E_p , enzyme bound to a peripheral site on $\alpha_2 M$ or $\alpha_2 M - E^*$.

 $[E_p \cdot \alpha_2 M]_t + [E_p \cdot \alpha_2 M - E^*]_t \ll [\alpha_2 M]_t + [\alpha_2 M - E^*]_t \approx [\alpha_2 M]_0$, and the concentration of enzyme available for reaction with $\alpha_2 M$ is given by $[E]_{free,t}$ $K_p[E]_{\text{total},t}/(K_p + n[\alpha_2 M]_0)$, (c) K_p is insensitive to the conformational state of α_2 M and, (d) the rate constant for bait region cleavage is independent of the state of occupancy of the peripheral sites.

Under these conditions the E-catalyzed conformational change in α_2 M will conform to Equations (3a) and 3(b):

$$\frac{F_{\infty} - F_0}{F_{\infty} - F_t} = 1 + [\alpha_2 \mathbf{M}]_0 \{ K_p / (K_p + n[\alpha_2 M]_0) \} k_i t$$
 (3a)

$$\frac{1}{k_{\text{i.obsd}}} = \frac{1}{k_{\text{i}}} + \frac{n[\alpha_2 \mathbf{M}]_0}{k_{\text{i}} K_{\text{p}}}.$$
 (3b)

Using Equation (3b), the slope of the straight line in Figure 3 and $k_i = 1.7 \times$ $10^7 \,\mathrm{M}^{-1} \,\mathrm{s}^{-1}$, $K_{\rm p}/n$ was calculated to be 24 nM (corrected to refer to $[\alpha_2 \mathrm{M}]_0$ in units of nM protein. The actual value obtained from Figure 3 was 18 nM). The data at hand cannot give independent estimates for K_p and n. However, since *n* must ≈ 10 for the approximation, $[\alpha_2 M]_t + [\alpha_2 M - E^*]_t \gg$ $[E_p \cdot \alpha_2 M]_t + [E_p \cdot \alpha_2 M - E^*]_t$ to be valid, the lower limit for K_p is likely to be in the 10² nM range.

The parallellism between the admittedly over-simplified Scheme 1 and how the trypsin- α_2 M system actually operates may be disputable. The biological significance of the proposed peripheral binding may also be challenged. Although a tight binding interaction between α_2M and chymotrypsin has previously been noted within a chromatographic context,8 such binding does not appear to be common to all proteases acting on $\alpha_2 M$.

(The rate constant for the reaction of plasmin with $\alpha_2 M$, for instance, has been reported to be invariant in the $[I] = [E] = 50-500 \,\mathrm{nM}$ range).⁶ On the other hand, the results presented here should be of technical interest in future studies on other protease $-\alpha_2 M$ couples. The specific point to which we would like to draw attention is the following. When experiments monitoring chemical or conformational changes are conducted under pseudo first-order conditions with $[\alpha_2 M]_0 \gg [E]_0$, a system conforming to Scheme I will be governed by Equation (4) or (5) depending on the relative magnitudes of $n[\alpha_2 M]_0$ and K_p . In the range where Equation (5) applies, the reaction will appear intrinsically first-order, and the observed rate constant may erroneously be taken to reflect a rate limiting unimolecular rearrangement in bait

Rate =
$$\frac{k_i K_p}{K_p + n[\alpha_2 \mathbf{M}]_0} [\alpha_2 \mathbf{M}]_{t \approx 0} [\mathbf{E}]_t$$
 (4)

if $n[\alpha_2 M]_0 \gg K_p$,

$$Rate = \frac{k_i K_p}{n} [E]_t$$
 (5)

region-cleaved $\alpha_2 M$, rather than the bimolecular cleavage process itself.

The following may be a case in point. TNS-probed conformational changes in the system, $[\alpha_2 M]_0 = 10$ [trypsin]₀ = 2-11 μ M, occur in two apparently first-order phases. 11 The rate constant for the first phase is a function of $[\alpha_2 M]_0$. Accordingly, this phase $(k = 1 \times 10^7 \,\mathrm{M}^{-1} \,\mathrm{s}^{-1})$ has been taken to reflect the bait region/thiol ester cleavage step. The second phase, on the other hand, appears to be inherently first-order, since the observed rate constant (1.4 s⁻¹) is independent of inhibitor concentration. Hence it has been assigned to the final conformational change leading to the formation of $\alpha_2 M - E^*$. The results of the present study bring up the alternative possibility that the first phase in question may have been related to the peripheral binding of E to α_2 M (or some other process observable only in the TNS-probed system) and that the second phase may in fact have been the one associated with bait region/thiol ester cleavage. Significantly, substitution of $k_i = 1.7 \times$ $10^7 \,\mathrm{M}^{-1} \,\mathrm{s}^{-1}$ and $K_{\rm p}/n = 24 \,\mathrm{nM}$ into Equation (5) yields k (pseudo firstorder) = $0.4 \,\mathrm{s}^{-1}$, which lies close to the value of $1.4 \,\mathrm{s}^{-1}$ quoted above. A further point which suggests that $k \approx 1 \,\mathrm{s}^{-1}$ may reflect a process other than a molecular rearrangement is the magnitude of the rate constant for conformational change obtained at 5°C and [E] \gg [α_2 M] ($k \approx 0.9 \text{ s}^{-1}$). The similarity of the first-order rate constants, despite the 20-degree difference

in temperature supports the idea that the rate-limiting process at the higher temperature must be bait region cleavage rather than a conformational change.

The problem of kinetic ambiguity presented here may apply also to data relating to protease-induced structural changes in other macromolecular substrates. If there is nonproductive binding, as in the case of trypsin and α_2 M, and the reactions are monitored under pseudo first-order conditions $([S]_0 \gg [E]_0)$, an intrinsically second-order process (such as the rate-limiting bait region cleavage in $\alpha_2 M$) may become kinetically indistinguishable from an intrinsically first-order process (e.g. rate-limiting conformational change). Hence an excess of one component over the other should be avoided in initial studies addressing such systems.

Acknowledgment

This study was supported by a grant (TBAG-1395) from the Scientific and Technical Research Council of Turkey.

References

- [1] L. Sottrup-Jensen (1989) J. Biol. Chem., 264, 11 539-11 542.
- [2] S. Soker, C.M. Svahn and G. Neufeld (1993) J. Biol. Chem., 268, 7685-7691.
- [3] B.B. Wolf and S.L. Gonias (1994) Biochemistry, 33, 11 270-11 277.
- [4] J.C. Bonner and A.R. Osornio-Vargas (1995) J. Biol. Chem., 270, 16236-16242
- [5] H. Gavish, I. Bab, A. Tartakovsky, M. Chorev, N. Mansur, Z. Greenberg, M. Namdar-Attar and A. Muhlrad (1997) Biochemistry, 36, 14883-14888
- [6] U. Christensen and L. Sottrup-Jensen (1984) Biochemistry, 23, 6619–6626.
- [7] J.P. Steiner, P. Bhattacharya and D.K. Strickland (1985) Biochemistry, 24, 2993-3001.
- P. Gettins, B.C. Crews and L.W. Cunningham (1989) Biochemistry, 28, 5613-5618.
- [9] J.W. Mehl, W. O'Connell and J. DeGroot (1964) Science, 145, 821–823.
- [10] R.D. Feinman, A.I. Yuan, S.R. Windwer and D. Wang (1985) Biochem. J., 231, 417-423.
- [11] D.K. Strickland, L.-J. Larsson, D.E. Neuenschwander and I. Björk (1991) Biochemistry, 30, 2797 - 2803.
- [12] V.F. Favaudon, M. Tourbez, F. Pochon, R. Mareix and H. Tourbez (1987) Eur. J. Bio*chem.* **165**, 31–37.
- [13] H. Arakawa, T. Urisaka, H. Tsuruta, Y. Amemiya, H. Kihara and A. Ikai (1994) FEBS Lett., 337, 171-174.
- [14] G.D. Virca and J. Travis (1984) J. Biol. Chem., 259, 8870-8874.
- [15] P. Laurent and J.G. Bieth (1989) Biochim. Biophys. Acta, 994, 285–288.
- [16] T. Chase and E. Shaw (1969) Biochemistry, 8, 2212-2224.
- [17] T. Kurecki, L.F. Kress and M. Laskowski (1979) Anal. Biochem., 99, 415-420

